Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(*E*)-4-[(4-Amino-5-bromopyridin-3-yl)iminomethyl]phenol

Mingjian Cai, Mingjie Zhang* and Yongliang Hu

Department of Chemistry, Tianjin University, Tianjin 300072, People's Republic of China

Correspondence e-mail: mjzhangtju@163.com

Received 21 March 2008; accepted 26 March 2008

Key indicators: single-crystal X-ray study; T = 113 K; mean σ (C–C) = 0.004 Å; R factor = 0.041; wR factor = 0.100; data-to-parameter ratio = 16.8.

In the molecule of the title compound, $C_{12}H_{10}BrN_3O$, the pyridine and benzene rings are oriented at a dihedral angle of 34.93 (3)°. Intramolecular $N-H\cdots N$ and $N-H\cdots Br$ hydrogen bonds result in the formation of two non-planar five-membered rings. In the crystal structure, intermolecular $O-H\cdots N$ and $N-H\cdots O$ hydrogen bonds link the molecules to form a three-dimensional network.

Related literature

For general background, see: Liu et al. (2002).

a = 4.9607 (10) Å

b = 15.586 (3) Å c = 14.906 (3) Å

Experimental

Crystal data

C ₁₂ H ₁₀ BrN ₃ O	
$M_r = 292.14$	
Monoclinic, $P2_1/n$	

$\beta = 95.65 \ (3)^{\circ}$
$V = 1146.9 (4) \text{ Å}^3$
Z = 4
Mo $K\alpha$ radiation

Data collection

Rigaku Saturn diffractometer Absorption correction: multi-scan (Blessing, 1995) $T_{min} = 0.717, T_{max} = 0.814$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.040$ $wR(F^2) = 0.100$ S = 1.02 Z739 reflections 163 parameters2 restraints 14191 measured reflections 2739 independent reflections 2123 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.053$

H atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{max} = 0.53 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{min} = -0.59 \text{ e } \text{\AA}^{-3}$

 Table 1

 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O1-H1\cdots N1^i$	0.82	1.88	2.688 (3)	167
$N3-H3A\cdots Br1$	0.877 (18)	2.72 (3)	3.125 (4)	110.0 (19)
$N3-H3A\cdotsO1^{ii}$	0.877 (18)	2.54 (2)	2.967 (5)	111.0 (19)
$N3-H3B\cdots N2$	0.889 (16)	2.28 (3)	2.700 (5)	109 (2)

Symmetry codes: (i) $x + \frac{3}{2}, -y + \frac{1}{2}, z - \frac{1}{2}$; (ii) -x + 2, -y + 1, -z.

Data collection: *CrystalClear* (Rigaku/MSC, 2005); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL* and *PLATON* (Spek, 2003).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2438).

References

Blessing, R. H. (1995). Acta Cryst. A51, 33-38.

Liu, X.-L., Liu, Y.-H., Shi, Y.-C. & Jian, P.-M. (2002). Chin. J. Org. Chem. 22, 482-488.

Rigaku/MSC (2005). *CrystalClear*. Rigaku/MSC, The Woodlands, Texas, USA. Sheldrick, G. M. (2008). *Acta Cryst.* A**64**, 112–122.

Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

supplementary materials

Acta Cryst. (2008). E64, o1053 [doi:10.1107/S160053680800812X]

(E)-4-[(4-Amino-5-bromopyridin-3-yl)iminomethyl]phenol

M. Cai, M. Zhang and Y. Hu

Comment

Schiff bases, as substrates, are important organic intermediates. Their recent applications in asymmetric catalytic hydrogenation, asymmetric chemical reduction and oxidation and asymmetric alkylidation of carbon atom, as well as reactions with Lawessen regent are very active (Liu *et al.*, 2002). We have recently synthesized the novel title compound, (I), and report herein its crystal structure.

In the molecule of the title compound, (I), (Fig. 1) the bond lengths and angles are within normal ranges. Rings A (N1/C1–C5) and B (C7–C12) are, of course, planar and the dihedral angle between them is A/B = 34.93 (3)°. The intramolecular N—H···N and N—H···Br hydrogen bonds (Table 1) result in the formation of two non-planar five-membered rings; C (N2/C4/C5/N3/H3B) and D (Br1/C1/C5/N3/H3A).

In the crystal structure, intermolecular O—H···N and N—H···O hydrogen bonds (Table 1) link the molecules to form a three-dimensional network (Fig. 2), in which they may be effective in the stabilization of the structure.

Experimental

5-bromopyridine-3,4-diamine (1.88 g, 10 mmol) was added to a solution of 4-hydroxybenzaldehyde (1.22 g, 10 mmol)in MeOH (50 ml). The solution was refluxed for 10 h, and then dried over magnesium sulfate, filtered and the volatiles were removed under reduced pressure. The crude product was further purified and recystallized from MeOH affording yellow crystals of (I) (yield; 70%).

Refinement

H atoms (for NH₂) were located in a difference synthesis and refined isotropically [N—H = 0.876 (10) and 0.889 (10) Å; $U_{iso}(H) = 0.028$ (8) and 0.027 (8) Å²]. The remaining H atoms were positioned geometrically, with O—H = 0.82 Å (for OH) and C—H = 0.93 Å for aromatic H, respectively, and constrained to ride on their parent atoms with $U_{iso}(H) = xU_{eq}(C,O)$, where x = 1.5 for OH H and x = 1.2 for aromatic H atoms.

Figures

Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 35% probability level.

Fig. 2. A partial packing diagram of (I). Hydrogen bonds are shown as dashed lines.

(E)-4-[(4-amino-5-bromopyridin-3-yl)iminomethyl]phenol

Crystal data	
C ₁₂ H ₁₀ BrN ₃ O	$F_{000} = 584$
$M_r = 292.14$	$D_{\rm x} = 1.692 {\rm Mg m}^{-3}$
Monoclinic, $P2_1/n$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2yn	Cell parameters from 3259 reflections
<i>a</i> = 4.9607 (10) Å	$\theta = 1.9 - 27.8^{\circ}$
<i>b</i> = 15.586 (3) Å	$\mu = 3.57 \text{ mm}^{-1}$
c = 14.906 (3) Å	T = 113 (2) K
$\beta = 95.65 \ (3)^{\circ}$	Plate, yellow
$V = 1146.9 (4) \text{ Å}^3$	$0.10 \times 0.08 \times 0.06 \text{ mm}$
Z = 4	

Data collection

Rigaku Saturn diffractometer	2739 independent reflections
Radiation source: rotating anode	2123 reflections with $I > 2\sigma(I)$
Monochromator: confocal	$R_{\rm int} = 0.053$
T = 113(2) K	$\theta_{\text{max}} = 27.9^{\circ}$
ω scans	$\theta_{\min} = 2.6^{\circ}$
Absorption correction: multi-scan (Blessing, 1995)	$h = -6 \rightarrow 6$
$T_{\min} = 0.717, \ T_{\max} = 0.814$	$k = -20 \rightarrow 20$
14191 measured reflections	$l = -19 \rightarrow 19$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.040$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.100$	$w = 1/[\sigma^2(F_o^2) + (0.0558P)^2 + 0.0115P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.02	$(\Delta/\sigma)_{\rm max} = 0.001$
2739 reflections	$\Delta \rho_{max} = 0.53 \text{ e} \text{ Å}^{-3}$
163 parameters	$\Delta \rho_{min} = -0.59 \text{ e} \text{ Å}^{-3}$

Extinction correction: none

2 restraints Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \text{sigma}(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Br1	0.22060 (6)	0.579793 (19)	0.40491 (2)	0.03830 (14)
01	1.2134 (4)	0.29970 (11)	-0.18529 (12)	0.0258 (4)
H1	1.2791	0.2515	-0.1871	0.039*
N1	-0.0149 (4)	0.34708 (13)	0.29398 (14)	0.0207 (5)
N2	0.4754 (4)	0.40060 (14)	0.12855 (15)	0.0214 (5)
N3	0.5400 (5)	0.53733 (15)	0.23987 (17)	0.0263 (5)
C1	0.1953 (5)	0.48149 (16)	0.32940 (17)	0.0213 (5)
C2	0.0159 (5)	0.41727 (16)	0.34483 (18)	0.0220 (6)
H2	-0.0886	0.4231	0.3930	0.026*
C3	0.1392 (5)	0.34101 (15)	0.22483 (17)	0.0197 (5)
Н3	0.1206	0.2921	0.1890	0.024*
C4	0.3231 (5)	0.40235 (16)	0.20351 (17)	0.0199 (5)
C5	0.3553 (5)	0.47740 (16)	0.25818 (17)	0.0202 (5)
C6	0.5619 (5)	0.32877 (16)	0.10100 (17)	0.0209 (5)
Н6	0.5200	0.2789	0.1310	0.025*
C7	0.7226 (5)	0.32179 (16)	0.02482 (17)	0.0192 (5)
C8	0.7946 (5)	0.39343 (16)	-0.02422 (18)	0.0224 (6)
H8	0.7318	0.4474	-0.0098	0.027*
C9	0.9575 (5)	0.38505 (16)	-0.09363 (18)	0.0232 (6)
Н9	1.0021	0.4333	-0.1257	0.028*
C10	1.0566 (5)	0.30420 (16)	-0.11623 (17)	0.0202 (5)
C11	0.9849 (5)	0.23290 (16)	-0.06839 (17)	0.0208 (5)
H11	1.0475	0.1789	-0.0829	0.025*
C12	0.8202 (5)	0.24182 (16)	0.00099 (17)	0.0213 (6)
H12	0.7736	0.1933	0.0324	0.026*
H3A	0.508 (6)	0.5891 (10)	0.2593 (19)	0.028 (8)*
H3B	0.590 (5)	0.5330 (19)	0.1844 (9)	0.027 (8)*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	0.0515 (2)	0.02764 (19)	0.0375 (2)	-0.00060 (13)	0.01289 (16)	-0.01098 (13)
O1	0.0335 (11)	0.0214 (9)	0.0253 (10)	0.0049 (8)	0.0168 (8)	0.0036 (8)
N1	0.0210 (11)	0.0234 (11)	0.0186 (11)	0.0013 (9)	0.0061 (9)	0.0025 (9)
N2	0.0192 (11)	0.0245 (11)	0.0212 (12)	0.0001 (9)	0.0060 (9)	0.0012 (9)
N3	0.0292 (13)	0.0188 (12)	0.0321 (14)	-0.0044 (10)	0.0090 (11)	-0.0002 (10)
C1	0.0241 (13)	0.0191 (12)	0.0207 (13)	0.0038 (10)	0.0024 (11)	-0.0032 (10)
C2	0.0235 (14)	0.0238 (13)	0.0195 (13)	0.0042 (11)	0.0067 (11)	0.0009 (11)
C3	0.0220 (13)	0.0181 (12)	0.0194 (13)	0.0009 (10)	0.0038 (10)	-0.0005 (10)
C4	0.0211 (13)	0.0219 (12)	0.0171 (13)	0.0029 (10)	0.0040 (10)	0.0014 (10)
C5	0.0205 (13)	0.0185 (12)	0.0211 (13)	0.0032 (10)	0.0003 (10)	0.0015 (10)
C6	0.0187 (13)	0.0227 (13)	0.0216 (13)	-0.0001 (10)	0.0042 (10)	0.0021 (11)
C7	0.0181 (12)	0.0229 (13)	0.0168 (13)	-0.0019 (10)	0.0030 (10)	0.0001 (10)
C8	0.0235 (13)	0.0191 (12)	0.0253 (14)	0.0027 (11)	0.0063 (11)	0.0031 (11)
C9	0.0269 (14)	0.0180 (12)	0.0259 (14)	0.0019 (11)	0.0093 (11)	0.0058 (11)
C10	0.0196 (13)	0.0223 (12)	0.0193 (13)	-0.0008 (10)	0.0039 (10)	0.0022 (10)
C11	0.0222 (13)	0.0186 (12)	0.0222 (13)	-0.0003 (10)	0.0054 (11)	-0.0001 (10)
C12	0.0228 (13)	0.0187 (12)	0.0229 (14)	-0.0013 (10)	0.0059 (11)	0.0025 (10)

Geometric parameters (Å, °)

1.898 (2)	С3—Н3	0.9300
1.352 (3)	C4—C5	1.426 (3)
0.8200	C6—C7	1.455 (3)
1.331 (3)	С6—Н6	0.9300
1.346 (3)	C7—C12	1.396 (3)
1.281 (3)	С7—С8	1.400 (3)
1.409 (3)	C8—C9	1.380 (4)
1.355 (3)	С8—Н8	0.9300
0.876 (10)	C9—C10	1.406 (3)
0.889 (10)	С9—Н9	0.9300
1.374 (4)	C10-C11	1.386 (3)
1.388 (4)	C11—C12	1.387 (3)
0.9300	C11—H11	0.9300
1.380 (3)	С12—Н12	0.9300
109.5	N2—C6—C7	122.8 (2)
116.9 (2)	N2—C6—H6	118.6
119.6 (2)	С7—С6—Н6	118.6
115 (2)	C12—C7—C8	117.8 (2)
113.1 (19)	C12—C7—C6	119.7 (2)
117 (3)	C8—C7—C6	122.4 (2)
121.5 (2)	C9—C8—C7	120.9 (2)
119.7 (2)	С9—С8—Н8	119.5
118.76 (19)	С7—С8—Н8	119.5
122.9 (2)	C8—C9—C10	120.6 (2)
	1.898 (2) $1.352 (3)$ 0.8200 $1.331 (3)$ $1.346 (3)$ $1.281 (3)$ $1.409 (3)$ $1.355 (3)$ $0.876 (10)$ $0.889 (10)$ $1.374 (4)$ $1.388 (4)$ 0.9300 $1.380 (3)$ 109.5 $116.9 (2)$ $119.6 (2)$ $115 (2)$ $113.1 (19)$ $117 (3)$ $121.5 (2)$ $118.76 (19)$ $122.9 (2)$	1.898(2) $C3-H3$ $1.352(3)$ $C4-C5$ 0.8200 $C6-C7$ $1.331(3)$ $C6-H6$ $1.346(3)$ $C7-C12$ $1.281(3)$ $C7-C8$ $1.409(3)$ $C8-C9$ $1.355(3)$ $C8-H8$ $0.876(10)$ $C9-C10$ $0.889(10)$ $C9-H9$ $1.374(4)$ $C10-C11$ $1.388(4)$ $C11-C12$ 0.9300 $C11-H11$ $1.380(3)$ $C12-H12$ 109.5 $N2-C6-C7$ $116.9(2)$ $N2-C6-H6$ $119.6(2)$ $C12-C7-C8$ $113.1(19)$ $C12-C7-C6$ $117(3)$ $C8-C7-C6$ $117.(2)$ $C9-C8-H8$ $118.76(19)$ $C7-C8-H8$ $122.9(2)$ $C8-C9-C10$

118.5	С8—С9—Н9	119.7
118.5	С10—С9—Н9	119.7
124.5 (2)	O1-C10-C11	123.1 (2)
117.8	O1—C10—C9	118.0 (2)
117.8	C11—C10—C9	118.8 (2)
126.0 (2)	C10-C11-C12	120.2 (2)
118.4 (2)	C10-C11-H11	119.9
115.5 (2)	C12—C11—H11	119.9
124.8 (2)	C11—C12—C7	121.6 (2)
119.4 (2)	C11—C12—H12	119.2
115.8 (2)	C7—C12—H12	119.2
-0.2 (4)	N2-C4-C5-C1	176.8 (2)
0.7 (4)	C4—N2—C6—C7	-179.3 (2)
179.2 (2)	N2-C6-C7-C12	177.2 (2)
-0.4 (4)	N2	-0.1 (4)
-175.8 (2)	C12—C7—C8—C9	-0.2 (4)
0.4 (4)	C6—C7—C8—C9	177.1 (2)
-35.7 (4)	C7—C8—C9—C10	-0.5 (4)
148.0 (2)	C8—C9—C10—O1	179.5 (2)
-178.7 (2)	C8—C9—C10—C11	0.8 (4)
2.9 (3)	O1-C10-C11-C12	-179.1 (2)
-0.7 (4)	C9—C10—C11—C12	-0.6 (4)
-179.13 (17)	C10-C11-C12-C7	-0.1 (4)
178.2 (2)	C8—C7—C12—C11	0.5 (4)
-5.1 (3)	C6—C7—C12—C11	-176.9 (2)
0.2 (3)		
	118.5 118.5 $124.5 (2)$ 117.8 117.8 $126.0 (2)$ $118.4 (2)$ $115.5 (2)$ $124.8 (2)$ $119.4 (2)$ $115.8 (2)$ $-0.2 (4)$ $0.7 (4)$ $179.2 (2)$ $-0.4 (4)$ $-175.8 (2)$ $0.4 (4)$ $-35.7 (4)$ $148.0 (2)$ $-178.7 (2)$ $2.9 (3)$ $-0.7 (4)$ $-179.13 (17)$ $178.2 (2)$ $-5.1 (3)$ $0.2 (3)$	118.5 $C8-C9-H9$ 118.5 $C10-C9-H9$ 124.5 (2) $01-C10-C9$ 117.8 $01-C10-C9$ 117.8 $C11-C10-C9$ 126.0 (2) $C10-C11-H11$ 115.5 (2) $C12-C11-H11$ 115.5 (2) $C12-C11-H11$ 124.8 (2) $C11-C12-C7$ 119.4 (2) $C11-C12-H12$ 115.8 (2) $C7-C12-H12$ -0.2 (4) $N2-C4-C5-C1$ 0.7 (4) $C4-N2-C6-C7$ 179.2 (2) $N2-C6-C7-C8$ -175.8 (2) $C12-C7-C8-C9$ 0.4 (4) $C6-C7-C8-C9$ -35.7 (4) $C7-C8-C9-C10$ 148.0 (2) $C8-C9-C10-O1$ -178.7 (2) $C8-C9-C10-C11$ 2.9 (3) $O1-C10-C11-C12$ -0.7 (4) $C9-C10-C11-C12$ -179.13 (17) $C10-C11-C12-C7$ 178.2 (2) $C8-C7-C12-C11$ -5.1 (3) $C6-C7-C12-C11$ 0.2 (3) $C1-C10-C11-C12-C11$

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H…A	$D \cdots A$	D—H··· A	
O1—H1…N1 ⁱ	0.82	1.88	2.688 (3)	167	
N3—H3A…Br1	0.877 (18)	2.72 (3)	3.125 (4)	110.0 (19)	
N3—H3A···O1 ⁱⁱ	0.877 (18)	2.54 (2)	2.967 (5)	111.0 (19)	
N3—H3B…N2	0.889 (16)	2.28 (3)	2.700 (5)	109 (2)	
Symmetry codes: (i) $x+3/2$, $-y+1/2$, $z-1/2$; (ii) $-x+2$, $-y+1$, $-z$.					

Fig. 2